
AQA Computer Science A-Level
4.1.2 Programming paradigms

Advanced Notes

https://bit.ly/pmt-edu



Specification:

4.1.2.1 Programming paradigms:
Understand the characteristics of the procedural and object-oriented

programming paradigms, and have experience of programming in each.

4.1.2.2 Procedural-oriented programming:
Understand the structured approach to program design and

construction.
Be able to construct and use hierarchy charts when designing

programs.
Be able to explain the advantages of the structured approach.

4.1.2.3 Object-oriented programming:
Be familiar with the concepts of:

● class
● object
● instantiation
● encapsulation
● inheritance
● aggregation
● composition
● polymorphism
● overriding

Know why the object-oriented paradigm is used.
Be aware of the following object-oriented design principles:

● encapsulate what varies
● favour composition over inheritance
● program to interfaces, not implementation

Be able to write object-oriented programs
Be able to draw and interpret class diagrams

https://bit.ly/pmt-edu



The procedural programming paradigm

Programs written in the procedural programming paradigm
are formed from sequences of instructions that are executed
in the order in which they appear. Procedures like functions
and subroutines form parts of the program and can be called
from anywhere within the program, by other procedures or
recursively.

Data is stored in procedural programs by constants and variables. A data structure is said
to have a global scope if it can be accessed from all parts of the program and a local
scope if it is only accessible from the structure within which it is declared.

Most of the programs that you may have written are likely to have been procedural.

The structured approach
Using the structured approach to program design and
construction keeps programs easy to understand and
manage. Four basic structures are used: assignment,
sequence, selection and iteration.

Structured programs are said to be designed from the top
down, meaning that the most important elements of a
problem are broken down into smaller tasks, each of which can be solved in a block of
code such as a procedure or module which goes on to form part of the overall solution.

Designing a program from the top down makes maintaining the program easier as
navigation of different elements of the overall solution is improved. If all of a program’s
code is contained within the same module, finding the specific line of code that needs
fixing can be incredibly difficult - especially in large projects.

When a program is split into modules, testing can be carried out on the individual modules
before they are combined to form the overall solution. Furthermore, development can be
split over a team of developers each of which is assigned a different module to work on.

Hierarchy charts
A hierarchy chart graphically represents the structure of a structured program. Each
procedure is displayed as a rectangle which is connected to any other procedures that are
used within it.

https://bit.ly/pmt-edu



Example
SUBROUTINE Main()
name ← INPUT
yearBorn ← INPUT
age ← calculateAge(yearBorn)
IF age > 17 THEN
OUTPUT name + “can drive”

ELSE
OUTPUT name + “can’t drive”

END IF
END SUBROUTINE

FUNCTION calculateAge(year)
yearNow ← getYear()
age ← yearNow - year
RETURN age

END FUNCTION

FUNCTION getYear()
RETURN system.year

END FUNCTION

The three procedures above (main, calculateAge and
getYear) form a program which could be represented by the
hierarchy chart on the left.

Each rectangle represents a part of the overall program. The
lines between the rectangles show the relationships that exist
between the different parts of the program.

In more complicated programs, each rectangle can be linked to
more than one other. This occurs when a procedure calls more
than one other procedure.

The hierarchy chart below represents a more complicated program:

The hierarchy chart above shows that the procedure startGame calls chooseLevel
which in turn calls both playLevelOne and playLevelTwo and so on.

https://bit.ly/pmt-edu



The object-oriented programming paradigm

Objects
Rather than storing data with constants and variables like procedural programs,
object-oriented programs use objects as containers of both data and instructions.

New objects are created from classes. The process of creating an object is called
instantiation. It is possible for one program to have many different objects of the same
class which will all have identical methods and procedures, however the actual values of
their properties are unique to the object. For example, a program could have three
different objects of the class car which all have a property called manufacturer. All
three cars could have different manufacturers.

Classes & class definitions
An object is defined as an instance of a class. A class is like a blueprint for objects, they
specify what properties (data) and methods (instructions) objects of their type will have.

For example, a class for creating car objects might have the properties EngineSize and
Colour and the methods StartEngine, ApplyHandbrake and TurnOnLights.

A class can be expressed on paper as a class definition which lists a class’ name,
properties and methods. Exam questions often ask you to write or interpret class
definitions.

The class definition for the car class could look like this:

Car = Class {
Private:
Manufacturer: String
Model: String
EngineCapacity: Float
IsTaxed: Boolean

Public:
Function GetManufacturer
Function GetModel
Function GetEngineCapacity
Function GetIsTaxed
Procedure SetDetails

}

A method or property that is listed as private can only be accessed from within an object.
Public methods allow an interface for accessing and modifying a class’ private properties.

https://bit.ly/pmt-edu



Encapsulation
Encapsulation is the name given to the process of combining methods and procedures to
form an object in object-oriented programming. An object is said to encapsulate its
contents, forming a single entity which encompasses all of the object’s properties and
methods.

Encapsulation allows the development of large programs to
be split across a team of developers, each of whom can be
allocated a class to develop. As long as a developer knows
the methods which belong to other classes, they can develop
their own class without knowing the specific implementation
of methods in other classes.

For example, suppose MyCar is an object of the class Car. The code
MyCar.StartEngine() can be written by a developer working on another part of the
program, and the developer doesn’t need to know exactly how the StartEngine
procedure works, just that it starts the car’s engine.

Inheritance
A class can inherit another class. Inheritance allows one class to share the properties and
methods of another class, while having its own properties and methods too.

DeLorean = Class (Car) {
Private:
ReactorOutput: Integer
FluxCapacitorInput: Integer

Public:
Function GetReactorOutput
Function GetFluxCapacitorInput
Procedure SetDetails (Override)

}

Inheritance can be described as an “is a” relationship: a DeLorean is a car.

The example above shows the class description for DeLorean. The brackets after class
(shown in red) indicate that the class inherits the Car class and therefore has all of the
properties and methods that the Car class has as well as its own properties and methods
that do not exist in the Car class such as ReactorOutput.

https://bit.ly/pmt-edu



Polymorphism
The word polymorphism comes from the Greek for “many forms”. Polymorphism occurs
when objects are processed differently depending on their class.

For example, if two objects with classes Car and Lorry both had a
ConsumeFuelForOneMile method, it might decrease the Car’s FuelLevel property
less than it would the Lorry’s. The method has taken the object’s class into account and
treated them differently based on their class.

Overriding
An overridden method has the same name as a method in an inherited class but different
implementation. The word override after the SetDetails method in the class description
above indicates that the implementation of the SetDetails method in the DeLorean
class differs from the implementation of the method with the same name in the Car class.

Association
If two objects are associated, they can be described as having a “has a” relationship. For
example, objects of the classes Car and Driver could be associated as a car has a
driver. An associated object forms part of its container object as a property. Just like a
property of an object can be a string, it can be an object of another class.

There are two specific types of association that you need to know about: aggregation and
composition.

Aggregation is the weaker of the two kinds of association. When an object is associated
with another by aggregation, it will still exist if its containing object is destroyed.

For example: a car’s passengers are associated with the car by aggregation. If the
car is scrapped, the passengers still exist independently.

Composition is a stronger relationship between classes. If two objects are associated by
composition and the containing object is destroyed, the associated object is also
destroyed.

For example: a car’s wheels are associated with the car by composition. The
wheels form an integral part of the car and scrapping the car destroys the wheels.

https://bit.ly/pmt-edu



Why is object-oriented programming used?
Object-oriented programming provides programs with a clear structure that makes
developing and testing programs easier for developers. Using the paradigm also allows for
large projects to be divided among a team of developers.

The use of classes allows code to be reused throughout the same program and even in
other programs. This improves the space efficiency of code.

Object-oriented design principles

There are three design principles used in object-oriented programming that you need to be
aware of. These are: encapsulate what varies, favour composition over inheritance and
program to interfaces, not implementation.

Encapsulate what varies
When designing a program in the object-oriented paradigm, any requirements which are
likely to change in the future should be encapsulated in a class so that any changes can
be easily made when required.

Favour composition over inheritance
Wherever possible, composition should be used over inheritance. This is because
composition is seen as a more flexible relationship between objects. Composition isn’t
always appropriate and inheritance should still be used in these situations.

Program to interfaces, not implementation
This design principle allows unrelated classes to make use of similar methods. An
interface is defined as a collection of abstract procedures that can be implemented by
unrelated classes.

When a new object is created, it can implement an interface which provides it with the
correct properties and methods.

https://bit.ly/pmt-edu



Writing object-oriented programs
The AQA specification requires you to have practical experience of coding user-defined
classes, involving:
• abstract, virtual and static methods
• inheritance
• aggregation
• polymorphism
• public, private and protected specifiers.

We recommend that you use online documentation to find out what the syntax for this
looks like in the programming language that you will use when you sit the exam.

Abstract, virtual and static methods
Abstract methods are declared in abstract classes and do not have an implementation.
They serve as a blueprint for methods that must be implemented by subclasses. Abstract
methods enforce a contract for subclasses to provide specific method implementations,
ensuring consistency across different subclasses.

Virtual methods are methods in a base class that can be overridden by derived classes.
This allows subclasses to provide their specific implementation while maintaining a
consistent method interface. Virtual methods facilitate polymorphism, enabling method
behaviour to vary based on the object that invokes the method.

Virtual methods belong to the class itself rather than any instance of the class. They can
be called on the class directly and do not require an instance to be invoked.

Class diagrams

Class diagrams can be used to visually represent the relationships that exist between
classes. Classes are represented by boxes with different connectors representing different
kinds of relationship.

Inheritance diagrams
A special type of class diagram, the inheritance diagram, shows the different inheritance
relationships that exist between classes in an object-oriented program.

Inheritance is shown with unfilled arrows which
point from an inherited class towards the class
which inherits it. In this example, the Laptop class
inherits the Computer class so an arrow points
upwards from Laptop to Computer.

https://bit.ly/pmt-edu



Inheritance arrows should always point upwards.

Association
Association is shown in class diagrams with diamond headed arrows.

Aggregation

Aggregation (the weaker of the two types
of association) is shown with an unfilled
diamond headed arrow.

Composition

Composition (the stronger relationship) is
shown with a filled diamond headed arrow.

Class diagrams with properties and methods
A class diagram can contain more information about classes than just their name. When
this is done, a class is represented by three boxes. The uppermost box contains the class
name, the middle box contains the class’ properties and the bottom box contains the class’
methods.

Student

- Name: String
- Age: Integer

+ GetName
+ GetAge
+ SetDetails

https://bit.ly/pmt-edu



A plus sign indicates that a property or method is public and a minus indicates that the
property or method is private. A pound symbol (#, not £) indicates that a property or
method is protected.

Protected properties and methods are accessible from within the object that declares them
(just like if they were private) and also from any inherited objects.

https://bit.ly/pmt-edu


